私にも できた!

IFE SCIENCE SERIES

PCR実戦技術編(1)

技術の多様化にともなって、ライフサイエンス研究に占める研究試薬・キットの役割は日に日々大きくなってきています。その一方において、情報が増えすぎて逆に効果的な研究ができなくなっているとの声も聞かれます。

本シリーズは、そのような情報を一旦整理し、初心者の方にも分かりやすく効果的にライフサイエンス実験を解説できないか、との趣旨から企画されました。

今まで、研究員の実際の実験ノートなども参考に、市販のノウハウ本や実施例集ではカバーできなかったような『生の事例』を紹介することで、より身近に技術を感じていただけないかと考え、『PCRを用いる遺伝子クローニング編〈Vol.1〉』、『遺伝子発現解析(前・後編〉〈Vol.2,4〉』、及び『ウェスタンブロッティング・免疫組織染色編〈Vol.3〉』をご紹介させていただきました。

その中で、「PCR~タンパク質発現実験」の中で使われるDNA関連技術に関して高い関心をもたれている学生さんや先生方が多い印象を受けました。ポストゲノム時代と呼ばれると昨今ですが、意外とDNAを扱う実験が多いようです。また、ポストゲノム時代になってから、初めて遺伝子実験をされるような方も多いように感じました。

そこで、今回から「PCR実戦技術編」と題した シリーズを4回に分けてお届けさせていただくこと になりました。本稿が、研究に携われる方の一助に なれば幸いです。

この前のシリーズでは、まだ駆け出しの新人だったA子さんは、入社4年目に突入し、ますます張り切っているようです。そんな中、強力なライバルが登場したようですが…。

研究所近郊でレンゲ草を見つけました

今までの 登場人物

Sリーダー A 冷静沈着なライフ デ サイエンスグルー (プのリーダー

A子さん 今年入社4年目 になる研究員

N代さん 今年入社3年目 になる研究員 (A子さんのライバル)

S本さん アシスタント

本シリーズは、弊社ウェブサイト(http://www.toyobo.co.jp/bio)の「実験お助けコーナー」でご覧いただけます。

進化するKOD DNA polymerase

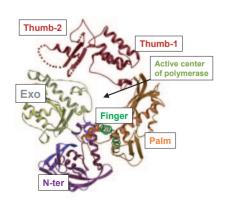
KOD DNA polymeraseは、1997年に報告されて以来様々な方向へ進化を遂げ、実に多くの分子生物学実験に用いられるようになりました。ここでは、そのKOD DNA polymeraseについて、その過去と応用の歴史について解説いたします。

1-1 KODの名前の由来は?

KOD DNA polymerase (以下、KOD) は当時大阪大学のグループによって鹿児島県の小宝島の硫気孔より分離された超好熱Archaea: *Thermococcus kodakaraensis* KOD1株よりクローニングされました¹¹。よく、"コダカラ"を"子宝"と思われて

いる方がいらっしゃいますが、"小宝"が正解です。しかし、この島に子宝祈願に訪れる方もいらっしゃるとのこと(このポリメラーゼにご利益があるかは不明ですが…)。ともかく、KODの名前は、"Kodakara Island"に由来します。

このポリメラーゼは、5,013bp(1,671AA)という大変長い open reading frame (Accession No.D29671)中に見いだされました。KODの分子量は約9万ですので、かなり大きな ORFとして発見されたことになります。実は、このORFにはインテインと呼ばれる2つの挿入配列(Intein-1:360AA, Intein-2:537AA)が含まれていました。現在販売されているKODは、これらの配列を遺伝子工学的に除去したものです。


参考までに、インテイン (Intein) とはタンパク質分子の一部として翻訳され、合成後に自動的に切除されるアミノ酸配列のことを指します。残った部分 (Extein) はペプチド結合で再結合されます。このインテインは1980年代後半に報告されて以来、生物界に広く確認されています。インテインの多くはhoming endonulceaseのドメインを含み、自身の伝播に関わっていると考えられています。この配列は利己的遺伝子要素として太古の昔にKODの遺伝子中に進入してきたものと推察されます。

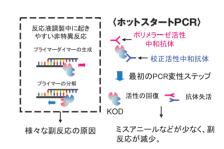
 M. Takagai, M. Nishioka, H, Kakihara, M, Kitabayashi, H. Inoue, B. Kawakami, M. Oka and T. Imanaka, Appl. Environ. Microbiol., 63: 4504-4510 (1997)

1-2 KOD DNA polymeraseの特性

Family B (α 型) に分類されるKODのようなPCR用酵素が Taq DNA polymerase (以下、Taq) などの好熱細菌由来の Family A (Poll型) に属するPCR用酵素と大きく異なる点としては、 $3' \rightarrow 5'$ エキソヌクレアーゼ活性 (校正活性) を有する点を 挙げることができます。この活性を持つことにより、KODは、Taq に比べ、約50~80倍という驚異的に高い正確性を示し、遺伝子のクローニングをはじめとする様々な用途に利用されています。

また、KODだけに備わっている性質も明らかにされていま

す。1分子の酵素が一度に伸長できる塩基数 (Processivity)は同じくα型に属するPfu DNA polymerase (以下、Pfu)が約20であるのに対し、KODは300以上と、飛びぬけて優れていることが分かっています。また、酵素を過剰量添加した

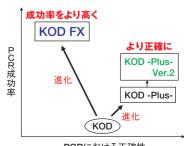

条件での、1秒間の伸長塩基数 (Elongation rate) も、Pfuが約25、Taqが約61であるのに対して、KODは約106-138と極めて優れていることが分かっています。

また、2001年にKODの立体構造が明らかとなり²⁾、その後のKODの改良研究は大きく進展しました。KODに特有な配列が立体的にどの部分に配置されているかも明らかとなり、KODの高い伸長性や効率に対する理解が深まりました。

2) H. Hashimoto, M. Nishioka, S. Fujiwara, M. Takagi, T. Imanaka, T. Inoue and Y. Kai, , *J. Mol. Biol.*, **306**: 469-477 (2001)

1-3 様々な分野への応用

PCR反応溶液を 調製してからPCRが 開始されるまでの間 に、ポリメラーゼとエ キソヌクレアーゼ活 性が発現して、プラ イマーなどを基点な して様々な副反応が 起こることが、非特


異増幅の要因の一つとして考えられています。そこで、KODのポリメラーゼ活性と校正活性に対する2種類の中和抗体が作製されました³⁾。この抗体を酵素に混合しておくことにより、常温下でのポリメラーゼ、及び校正活性を抑制することができます。抗体は最初の変性ステップで変性し、PCRには影響を及ぼしません。この技術は、『ホットスタートPCR法』と呼ばれ、高正確性PCR酵素「KOD -Plus-」に最初に取り入れられました。KOD -Plus-は更にバッファーを最適化することで、より高い正確性を達成し、現在、クローニング用酵素のスタンダードとなっています。

3) H. Mizuguchi, M. Nakatsuji, S. Fujiwara, M. Takagi and T. Imanaka, *J. Biochem.* (Tokyo), **126**: 762-768 (1999).

1-4 高成功率という切り口

近年、研究の進展の速度は速まり、様々な分野で分子生物学領域の技術を使用するニーズも増大しました。その中で、最も必要とされるPCR酵素の特性の一つとして、「PCRの成功率」が挙げられるようになりました。難しい配列を増幅しなくてはならない場合や、設計に無理のあるプライマーを使わざるを得ない場合においても、迅速に実験を進める必要がでてきたのです。そこで、KOD -Plus-の正確性をそのまま(Taqの約80倍)に成功率を向上させた「KOD -Plus- Ver.2」と、独自の技術を用いて格段

にPCR成功率を向上 させた「KOD FX」が 開発されました(KOD FXの正確性はTaqの 約11倍)。KODは、今 後さらに新たな境地を 目指して、日々進化を 続けています。

A子さんはT社バイオ研究所のライフサイエンス試薬開発グループの研究員です。新人だった彼女も入社4年目となり、そろそろ後輩の指導などのような仕事も増えてきています。

また4月からは、Sリーダー指導の下、A子さんを中心に数名の研究員とアシスタントさんでグループを作り、『PCRをテーマとした調査・改善活動』を行わなくてはなりません。今回、A子さんのグループには、以下のようなテーマが与えられました。しかし、あまりにも抽象的なテーマに、A子さんは少し戸惑っています。

課題:PCR実験を円滑に進めるにはどうすればよいか?

2-1 研究者はPCR実験の何に困っているの?

今日は、1回目の会合です。A子さん達は、早速、「PCR実験を円滑に進めるにはどうすればよいか」について話合うことにしました。しかし、みんながあまりにも色々なことを言ったため、結局全く収集がつかなくなってしまいました。

翌週行われた2回目の会合では、Sリー

ダーの指導もあって、まず、「PCR実験がうまくいかない」理由について、思いつくままポストイットに理由を書き付けていきました(図1)。みんな、思うところがあったのか、みるみる間に机はポストイットだらけになってしまいました。ざっと眺めると、みんなの意見は、幾つかに分類することができそうです。

そこで次に、「PCR実験がうまくいかない」ことに対する要因を分類してみました(図2)。すると、要因は、ターゲットのGC含量が高いなどの「増幅ターゲット」側の要因、変な場所にしかプライマーを設計できないなどの「実験上の制限」、「ポリメラーゼの選択」、「実験テクニック」の大きく分けて4つにきれいに分類できることが分かりました。順を追って考えると、きちんとまとまることに、みんな少し感動しました。

図1 ブレインストーミングの結果

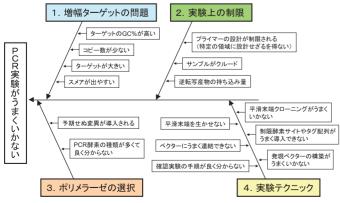


図2 要因の解析結果

2-2 高成功率PCR酵素「KOD FX」

次に、A子さん達は対策を打つことにしました。今回挙げられた要因のすべてに対して対策を打つことで、理論上的には、PCR実験はスムーズに進むようになるはずです。

話し合いを進める中、「要因の1.と2.を考慮して開発されたのが『KOD FX』ではないの?」、という意見が出されました。 KOD FXは、KOD DNA polymeraseをベースに、PCR成功率を考慮して最近開発されたPCR酵素です。様々な改良により今までにないくらいまでPCR成功率が向上しています。

そこで、A子さんたちは、要因の3.を『KOD FXをどういう時に使うべきか』、ということに置き換えて、図3に示すような対照表を作成してみました。結局、要因1.と2.はKOD FXをうまく用いることで、解決できそうです。若干正確性が落ちるので、クローニング実験に関してはKOD -Plus-にはかないそうもありませんが、従来のTaqベースの酵素と比べるとはるかに良いに違いありません。

結局、A子さん達は要因1.~3.の対策として、グループで年間を通じて、『KOD FXを用いる成功率向上に関する事例』を作成することにしました。残った要因4.の『実験テクニック』は、PCRでの増幅そのものではなく、PCRの周辺技術という感じです。これに関しては、SUーダーに何やら良い考えがあるようです。

KOD FX 活動報告 1.

PCR時のスメア、エキストラバンドなどの非特異増幅の 軽減について

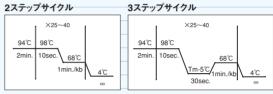
今回は、10kb以上のターゲットの増幅において 度々問題となる、非特異増幅の発生とプライマー長、 及び精製グレードの関係について検討を行いました。

●プライマーの精製グレードの影響の検討

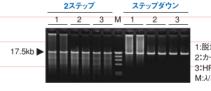
この実験では、比較的増幅が難しく、また、スメアやエ キストラバンドが出やすいことの知られている β globin遺伝子17.5kbをターゲットとして検討を行いま した。テンプレートとしては、50µIの反応あたり、ヒトゲ ノムDNAを50ngを用いて行いました。プライマーは、 脱塩、カートリッジ精製、及びHPLC精製の3通りの方法 で精製されたもの(表1のA及びB)を用いました。サイ クルは、Long PCRに有効とされている2ステップサイ クル(30サイクル)とステップダウンサイクル(5→5→ 5→20サイクル)で行いました(右図参照)。

その結果、脱塩グレードのプライマーの場合、いずれ のサイクル条件においても、スメアが出やすい傾向にあ ることが分かりました(図4)。一方、カートリッジ精製と HPLC精製グレードのプライマーでは、ステップダウン のサイクル条件で目的バンドのみのキレイな増幅を確 認することができました。この結果から、長いターゲット を増幅する場合、カートリッジ精製以上のグレード 10kb以上ののプライマーを用いることにより良好な結 果が得られることが分かりました(図4)。

●プライマー長の影響の検討


次に、18merから40merまで2base刻みで長さを 変化させたプライマー(表1のNo.1~12、精製は、いず れもカートリッジ精製グレード)を用いて検討を行いま した。

その結果、2ステップのサイクル条件では、24~40 merでターゲットの増幅が認められ、同時に出現したエ キストラバンドはプライマーが長い程少ない傾向にある ことが分かりました(図5)。一方、ステップダウンのサイ クル条件では、28~40merでターゲットの増幅が得ら れ、エキストラバンドはプライマー長に関わらず出現し ませんでした。この結果から、Long PCRでは、通常よ り長めのプライマーを設計し特異性を上げると共に、ア ニーリング(及び伸長反応)を比較的高い温度に設定す ることでより良い結果が得られることが分かりました。 この傾向は、KOD FX以外のPCR酵素においても、


ある程度当てはまると推察されます。

【プロトコール#1】 KOD FXの基本反応条件

試薬	添加量(µl)	終濃度
2×PCR buffer for KOD FX	25	1X
2mM dNTPs	10	0.4mM each
10pmol/μl Primer #1	1.5	0.3μM
10pmol/μl Primer #2	1.5	0.3μM
Template DNA	x	$\{ egin{array}{ll} {\sf Genomic\ DNA}: \sim & 200 {\sf ng}/50 \mu {\sf I} \ {\sf Plasmid\ DNA} & : \sim & 50 {\sf ng}/50 \mu {\sf I} \ {\sf cDNA} & : \sim & 200 {\sf ng} ({\sf RNA}$ 相当量)/50 $\mu {\sf I} \ {\sf cDNA} & : \sim & 200 {\sf ng} ({\sf RNA}$ 相当量)/50 $\mu {\sf I} \ {\sf cDNA} & : \sim & 200 {\sf ng} ({\sf RNA}$
PCR grade water	Υ	
KOD FX (1.0U/μl)	1	1.0 U / 50 μl
Total	50 (μl)	

ステップダウンサイクル X5 X5 X15~25 98℃ 98℃ 98℃ 2min. 10sec. 74°C 10sec 10sec 10sec 70°C 68°C 68°C 1min./kb 1min./kb 1min./kb 1min./kb 7min

1:脱塩 2:カートリッジ精製 3:HPI C精製 M:λ/Hind II digest

図4. プライマーの精製度が非特異反応に及ぼす影響

2ステップ	ステップダウン			
M 1 2 3 4 5 6 7 8 9 10 11 12	M 1 2 3 4 5 6 7 8 9 10 11 12			
17.5kb •	=======================================			
F側Primer (Primer長)				

6: hBG17.5F30 (30mer)

7: hBG17 5F28 (28mer) 1: hBG17.5F40 (40mer) 2: hBG17.5F38 (38mer) 8: hBG17 5F26 (26mer)

9: hBG17.5F24 (24mer) 3: hBG17.5F36 (36mer) 4: hBG17.5F34 (34mer) 10: hBG17.5F22 (22mer) 5: hBG17.5F32 (32mer) 11: hBG17.5F20 (20mer)

R側Primerは 1~12共通で hBG17 5B (35mer)を使用。

M:λ/Hind II digest 12: hBG17.5F18 (18mer)

図5. プライマー長が非特異反応に及ぼす影響

表1. 実験に用いたプライマー配列

	No.	Primer名	Primer配列	PrimerSize (mer)	GC%	Tm(℃)	精製グレード	
	Α	hGB17.5F	TGCACCTGCTCTGTGATTATGACTATCCCACAGTC	35	49%	77.5	脱塩、カートリッジ、HPLC	
	В	hGB17.5R	ACATGATTAGCAAAAGGGCCTAGCTTGGACTCAGA	35	46%	76.9	脱塩、カートリッジ、HPLC	
-[1	hGB17.5F40	GACTTTGCACCTGCTCTGTGATTATGACTATCCCACAGTC	40	48%	78.8	カートリッジ	
	2	hGB17.5F38	CTTTGCACCTGCTCTGTGATTATGACTATCCCACAGTC	38	47%	78.0	カートリッジ	
-[3	hGB17.5F36	TTGCACCTGCTCTGTGATTATGACTATCCCACAGTC	36	47%	77.7	カートリッジ	
	4	hGB17.5F34	GCACCTGCTCTGTGATTATGACTATCCCACAGTC	34	50%	75.9	カートリッジ	
-[5	hGB17.5F32	ACCTGCTCTGTGATTATGACTATCCCACAGTC	32	47%	72.3	カートリッジ	
	6	hGB17.5F30	CTGCTCTGTGATTATGACTATCCCACAGTC	30	47%	69.9	カートリッジ	
-[7	hGB17.5F28	GCTCTGTGATTATGACTATCCCACAGTC	28	46%	67.4	カートリッジ	
	8	hGB17.5F26	TCTGTGATTATGACTATCCCACAGTC	26	42%	64.0	カートリッジ	
_	9	hGB17.5F24	TGTGATTATGACTATCCCACAGTC	24	42%	61.6	カートリッジ	
ſ	10	hGB17.5F22	TGATTATGACTATCCCACAGTC	22	41%	57.9	カートリッジ	
	11	hGB17.5F20	ATTATGACTATCCCACAGTC	20	40%	52.7	カートリッジ	
	12	hGB17.5F18	TATGACTATCCCACAGTC	18	44%	49.7	カートリッジ	

2-3 強力ライバル出現

A子さんたちの話し合いの中で、PCR実験の問題の一つとして挙げられた「実験テクニック」に関して、Sリーダーから提案がありました。実験テクニックに関する課題を年間に数回に分けて出して、その課題の解決を通じてそれぞれの手法の裏に潜む注意点・問題点を明らかにするというのです。いつも冷静沈着なSリーダーには、なにやら考えがありそうです。

結局、サークル員の中から代表としてA子さんとN代さんに、それぞれ関連のある課題が出されることになりました。A子さんは、後輩のN代さんに先輩の威厳を示さなくてはとあせっているようです。一方、N代さんは、A子さんとは違って、学生時代から分子生物学分野の研究を行ってきた経歴がありますし、負けん気では一歩も引けをとりません。

さて、二人には、次のような課題が出されました(皆さんも是非考えてみてください)。

今後の活動方針(対策)

■要因1~3 ⇒ PCR事例を収集

■要因4

➡ Sリーダーの出す課題に チャレンジ

A子さんへの課題:

- ●平滑末端を有するPCR増幅断片の平滑末端クローニング方法の手順をまとめなさい。
- ●その手法を用いて、human β-Actin cDNAのC末端欠損変異体を作製しなさい。

条件: ・Accession No.X00351のcDNAクローンを準備するので、そのプラスミドをPCRの鋳型とすること。

- ・開始コドンの位置にNde I のサイトを導入すること。
- ・732番目のGCTをTGA (ストップコドン) に変更し、なるべくすぐ後ろにXba I サイトを導入すること。
- ・作製したクローンを大腸菌DH5 α に形質転換した後に、Nde I とXba I で切り出して、発現ベクターに組換えること。

N代さんへの課題:

- ●平滑末端を有するPCR増幅断片をTAクローニングする手順をまとめなさい。
- ●その手法を用いて、human G3PDH cDNAのC末端欠損変異体を作製しなさい。

条件: ·Accession No.M17851のcDNAクローンを準備するので、そのプラスミドをPCRの鋳型とすること。

- ・開始コドンの位置にNco I サイトを導入すること。
- ・796番目のTATをTGA (ストップコドン) に変更し、なるべくすぐ後ろにXba I サイトを導入すること。
- ・作製したクローンを大腸菌DH5lphaに形質転換した後に、Nco I とXba I で切り出して、発現ベクターに組換えること。

2-4 平滑末端クローニング (A子さんのプロトコール)

KOD DNA polymeraseの優れた正確性を担っているのは校正活性とも呼ばれる3' \rightarrow 5'エキソヌクレアーゼ活性です。この活性によって、KOD -Plus-やKOD FXなどのPCR酵素によって増幅されたPCR産物の末端は平滑化されています。よって、PCR産物は、EcoRVやSmaI などの平滑末端を生じる制限酵素サイトに直接クローニングすることが可能です。

A子さんは、この課題を与えられた瞬間に過去の失敗を思い出しました(Vol. 1参照)。A子さんは、脱リン酸化処理されたベクターにPCR産物を直接連結しようとして失敗したのでした。苦い思い出ですが、今となってはありがたい失敗でもあります。A子さんは、失敗した直後に、平滑末端クローニングのプロトコールを完全にまとめていました。

平滑末端サイトを用いてクローニングする場合、ベクターのセルフライゲーションが問題になります。そこで、ベクターを制限酵素で切断した後に脱リン酸化して使用するのが普通です。ライゲーションが成立するにはDNAの5'末端がリン酸化されていなくてはならず、脱リン酸化されたサイト同士は連結することができないからです。

しかし、ここで注意しなくてはならないのが一般的にPCRに用いられるプライマーの5'末端がリン酸化されていないということです。当然、そのプライマーを用いて得られたPCR産物の5'末

端も、制限酵素で処理された末端とは異なりリン酸化されていません。DNA断片を連結するには少なくとも片方の断片の5'末端はリン酸化されていなければならないので、このような場合、リン酸化されたプライマーを用いてPCRを行うか、PCR産物をリン酸化して用いる必要があります。

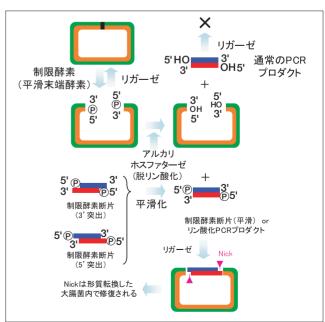
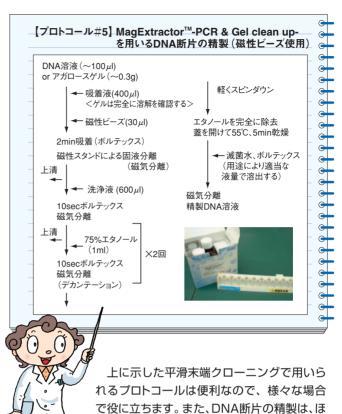


図6 平滑末端クローニングのフロー


ワンポイントメモ ①

- ・KOD -Plus-やKOD FXのPCR産物は平滑化されています。
- ・通常PCRに用いられるプライマーはリン酸化されていません。

【プロトコール#2】 プライマーのリン酸化 【使用試薬】 •50pmole/μl (μM) 以上のPrimer溶液 •T4 Polynucleotide Kinase (Code No. PNK-111) ・rA TP (Code No. ATP-111) → 10mMに希釈して使用 Primer (50pmole/µl [50µM]) 14 (µI) 10×Protruding End Kinase Buffer 10mM rATP (Code No.ATP-111を希釈して使用) T4 Polynucleotide Kinase (5~20U/μI) * Total 20 37℃. 1h反応 95℃、5min (T4 Polynucleotide Kinaseを失活) ↓ ← 50 µl 滅菌ミリQ水を添加します 10pmole/ μ l [10 μ M] primer溶液として使用します*2*3 PCRを行います MagExtractor™ -PCR & Gel Clean up- (Code No. NPK-601) などに よる精製 T4 Polynucleotide Kinaseは添加できる最大量を添加します(最終液量の10%)。 このままPCR反応に使用します *3 凍結して何度でも使用可能です。

【プロトコール#3】PCR産物のリン酸化 【使用試薬】 ・高正確性PCR酵素の精製PCR産物(平滑末端) •T4 Polynucleotide Kinase (Code No.PNK-111) ・rATP (Code No.ATP-111) → 10mMに希釈して使用 精製PCR産物 ~1µg 10×Blunt End Kinase Buffer 10mM rATP (Code No.ATP-111を希釈して使用) T4 Polynucleotide Kinase (5~20U/μI)* Total 50 (μl) 37℃、1h反応 MagExtractor™ -PCR & Gel Clean up- (Code No. NPK-601) などに *1 T4 Polynucleotide Kinaseは添加できる最大量を添加します(最終液量の10%)。

ワンポイントメモ ②

●プロトコール#5の精製法では約40bp以下のDNA断片は除去されます。

ぼすべての組換え工程の中で使用されますの

で覚えておくと良いと思います(少量の場合は

1/2スケールで行うこともできます)。

● ゲルからの切り出しは、UV照射によりDNAが損傷を受けるため 効率が低下します。トランスイルミネーター上で切り出す際は、ア クリル板などを間にはさみ、短時間で切り出す配慮が必要です。

2-5 平滑末端PCR産物のTAクローニング (N代さんのプロトコール)

KOD -Plus-やKOD FXのPCR産物の末端は平滑化されてい ますので、そのままではTAクローニングすることはできません。 このような場合、KOD専用のTAクローニングキット「TArget Clone™ -Plus-(Code No.TAK-201)」を用いると便利です。 原理は、増幅産物にTagを混合して末端にdAを付加するという 単純なものです。しかし、KODは熱安定性に優れ、PCR後の反応 液の中でも活性を保っているため、せっかくdA付加が起きても KODの校正活性でまた削られてしまいます。よって、このキット には、KODの校正活性に対する中和抗体が使用されています。 つまり、この抗体でKODの校正活性を抑えている間に、Taqを用 いてdA付加反応を行うわけです(図7)。そして、そのままTベク ターにライゲーションします。この方法は、PCR産物を精製せず にそのままベクターにクローニングすることができるので、とて も便利です。

ワンポイントメモ ③

KOD -Plus-やKOD FXのPCR産物は平滑化されていますが、TArget Clone™ -Plus-(Code No. TAK-201)を用いることで、簡単にTAクローニングすることが可能です。

【プロトコール#6】 KOD産物のTAクローニング

試薬	添加量
PCR産物 from KOD	اμ9
10x A-attachment Mix	1
60°C 、10min	

試薬	添加量	
DW	(3-X) μI	
2x Ligation Buffer	5	
pTA2 Vector (50ng/μI)	1	
上記反応物	X	
T4 DNA Ligase	1	
室温(15~25℃)、30min		
形質転換		

Vector: PCR産物は1:3以上に設定します。

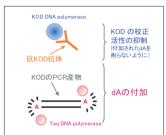


図7 KOD PCR産物のTAクローニング の原理

2-6 二人の解答

今日は朝から、A子さんとN代さんは、Sリーダーから出されたC末端欠損変異体作製の課題に一心不乱に取り組んでいます。何やら張り合っているようです。

A子さんは、鋳型はプラスミドなので、少し強引な設計のプライマーを用いてもきちんと増幅されるはずと考えています。まず、A子さんは、指定どおりNde I サイトを含んだフォワードプライマー(BACT-F)を設計しました(図8)。次に、リバース側のプライマーの設計ですが、まず、指定のあった732番目のGCTをTGAに変更しました。次に、その直後の配列がXba I サイトとホモロジーの高い配列であったこともあり、そのまま続けて直近にXba I サイトを導入し、BACT-Rプライマーを設計しました(図8)。A子さんは、このプライマーを用いてKOD-Plus-で増幅したPCR産物を、先程の平滑末端クローニングの方法に従って、クローニングするつもりです。この程度の増幅ならば、KODFXを使うまでもありません。慎重なA子さんは、最後に、組換えた後のプラスミドの制限酵素マップをシュミレーションすることも怠りませんでした。A子さんは、気になるのか、余った時間でN代さんの配列も何やらコンピューターで解析しているようです。

 結局、TGA (ストップコドン)から3塩基も下流にXba I サイトを導入しなければなりませんでした。G3PDH-Rプライマーは多くのミスマッチを含みますが、特異的な部分を延ばしたので問題ないはずです。また、上流側のAの連続が気になったので、下流側を少し長めに設計しました。N代さんは、このプライマーを用いてKOD -Plus-で増幅したPCR産物をTArget Clone™ -Plus-(Code No. TAK-201)を用いて直接TAクローニングするつもりです。

二人とも、何とか夕方にはプライマーの注文を終わらせることができました。念のため、2人は自分の設計したプライマーのデザイン案をSリーダーのところに持ち寄りました。Sリーダーの机の上に広げられた解答をしばらく眺めていたA子さんとN代さんは、それぞれ内心 "にやり" としました。

ちょうどその時、Sリーダーのメガネのレンズが夕日に反射して一瞬 "キラリ" と輝いたのを、横にいたアシスタントのS本さんは見逃しませんでした。

OOTOOLTHTOOLTOLTOLTOLOO	7 (
GCTC <u>CATATG</u> GATGATGATATCGC →	
<i>Nde</i> I BACT-F	(
1 - · · CGCCGCCAGCTCACCATGGATGATATCGCCGCGCTCGTCGTC	
M D D D I A A L V V	- 0
	_ (
732	(
- GAGCAAGAGATGGCCACGGCTGCTTCCAGCTCCTCCCTGGAGAAGAGCTA	
EQEMATAASSSIEKS	- (
← GATGGCCACGGCTTGATCTAGATCC	
STOP Xha I	
7.00-0-1	- (
BACT-R	
	١ (
	- (

図8 A子さんの解答 β-actin [Accession No.X00351] のC末端欠損変異体の作製方法

ACCCATGGGGAAGGTGAAGGT →
Nco I G3PDH-F
1 TCGCTCAGAACACCT ATG GGGAAGGTGAAGGTCGGAGTCAAC
M G K V K V G V N
796
796 - CTGCCGTCTAGAAAACCTGCCAAA <u>TAT</u> GATGACATCAAGAAGGTG - C R L E K P A K Y D D I K K V ← ACCTGCCAAA <mark>TGA</mark> GAT <u>TCTAGA</u> AAGAAGG
C R L E K P A K Y D D I K K V
← ACCTGCCAAA <mark>TGA</mark> GAT <u>TCTAGA</u> AAGAAGG
STOP Xba I
G3PDH-R

図9 N代さんの解答 G3PDH [Accession No.M17851] のC末端欠損変異体の作製方法

みなさんも2人の解答が正しいかどうかを、吟味してみてください。【注意:2人の解答には間違いが含まれている可能性がありますので、上の図を実験の参考にはしないでください。】

2人の解答の解説は、次号「PCR実戦技術編(2)」でお届けする予定です。

次回、乞うご期待!!

KOD -Plus- Ver.2とKOD FXはどのように 使い分ければいいですか?

KOD -Plus- Ver.2はKOD -Plus-の正確性を落とさず に〈Tagの約80倍〉、PCR成功率を向上させています。 Sリーダー よって、難しい配列などを、正確性を落とさずに増幅した いような場合に用います。

> KOD FXは、KOD -Plus- Ver.2以上にPCR成功率にこ だわって改良を加えたポリメラーゼです。GCが高く、どの 酵素を用いても増幅が困難なターゲットの増幅や、10~ 20kb以上程度の比較的大きなターゲットの効果的な増 幅、プライマーの設計に制限があり適切な位置にプライ マーが設計できなかった場合の増幅などに有効です。し かし、KOD-Plus-に比べて正確性が若干低下している〈Tag の約11倍:PCRエラーは144,535塩基中、19塩基程度> ので、それを考慮して実験する必要があります。よって、 正確性を優先するPCRは、まずはKOD -Plus-もしくは KOD -Plus- Ver.2を用いることを薦めます。

KOD FXはクルードなサンプルの増幅にも 有効ですか?

KOD FXは細胞などを含むクルード溶液からのPCRにも 有効です。実際の増幅では、細胞懸濁液の液量を反応液 Sリーダー 50μΙに対して2μΙ以下にすると効果的に増幅できます。ヒト の細胞ならば、1反応に2×104cells程度あれば十分です。 ヒト細胞株 (Jurkat細胞) の培養液を用いて、2×104cells から8.5kbの増幅の成功例があります。また、KOD FXはマ ウステールなどからのPCRにおいても有効です。

高成功率という言葉の意味が良く分からないの ですが…

GC含量の高いターゲットなどの増幅を行うときに、一回 のチャレンジで成功する確率が向上しているようなイメー SIJーダー ジです。クルードなサンプルにおいても同様なことが言え ます。今までどの酵素を用いても成功しなかったような PCRもKOD FXを用いることで増幅できる可能性があり ますので、冷蔵庫で眠っているプライマーを掘り起こして きて、一度チャレンジしてみると良いかも知れません。

KOD FXの末端も完全に平滑化されているの ですか?

KOD FXは、KOD -Plus-に比べて正確性は若干低下し ていますが、末端を平滑化するのに十分な校正活性を SIJ-ダー 有しています。

> よって、KOD FXで増幅されたDNA断片は、KOD -Plus-のPCR産物と全く同じ方法を用いて、クローニングする ことができます。

関連製品紹介

品 名	用途	包 装	Code No.	価 格
KOD -Plus-	高正確PCR	200U×1本	KOD-201	¥30,000
KOD -Plus- Ver.2	″ (さらに高効率)	200U×1本	KOD-211	¥32,000
KOD FX	高成功率PCR	200U×1本	KFX-101	¥35,000
KOD Dash	インサートチェック	250U×1本	LDP-101	¥25,000
Blend Taq®	正確性の不要なPCR全般	250U×1本	BTQ-101	¥19,000
Blend Taq® -Plus-	// (Hot start可能)	250U×1本	BTQ-201	¥21,000
RevaTra Ace -α-®	高効率RT	100回用	FSK-101	¥53,000
Ligation high Ver.2	高効率Ligation	750μl×1本	LGK-201	¥22,000
T4 Polynucleotide kinase	DNAのリン酸化	1,500U×1本	PNK-111	¥15,000
rATP	リン酸化の基質	50µmoles/0.5ml	ATP-111	¥15,000
E. coli Alkaline Phosphatase	DNA断片の脱リン酸化	100U×1本	BAP-111	¥15,000
MagExtractor™ -PCR & Gel Clean up-	DNA断片の精製(磁性ビーズ使用)	200回用	NPK-601	¥28,000
MagExtractor™-mRNA-	Poly (A) +RNAの精製 (磁性ビーズ使用)	5回用	NPK-801	¥44,000
MagExtractor™ -Plasmid-	プラスミドの精製(磁性ビーズ使用)	500回用	NPK-301	¥33,000
Magical Trapper	磁性分離(磁性スタンド)	1個	MGS-101	¥38,000
TArget Clone™	TA Cloning	10回用	TAK-101	¥12,000
TArget Clone™ -Plus-	″ (KOD専用)	10回用	TAK-201	¥16,000
Competent high JM109	高効率形質転換	0.1ml×10本	DNA-900	¥17,000
Competent high DH5α	高効率形質転換	0.1ml×10本	DNA-903	¥17,000
Competent Quick DH5α	サブクローニング用形質転換	0.1ml×20本	DNA-913	¥29,000