【KOD SYBR® qPCR Mix トラブルシューティング】

現象	原因	対策
高濃度サンプルの反	サンプル DNA への	SYBR [®] Green I は全ての二本鎖 DNA に結合し、
応で直線性が乱れる	SYBR® Green I の結合	蛍光を発する性質を持つため、サンプルに高濃度
	によるベースラインの上	の二本鎖 DNA が含まれる場合、ベースラインが
	昇	上昇し、正確な Ct 値を算出できなくなることがあり
		ます。サンプル濃度を下げて反応を行ってくださ
		ر١ _°
	サンプル溶液中の不純	サンプル中に多くの不純物を含む場合、PCR が
	物による反応阻害	阻害されることがあります。また、リアルタイム
		PCR 用に設計されていない逆転写反応用試薬に
		より合成した cDNA をご使用の場合、逆転写反応
		液に含まれる物質によって、反応が阻害されるこ
		とがあります。サンプル濃度を下げて反応を行う
		か、サンプルの精製を行ってください。また、逆転
		写反応にはリアルタイム PCR 用に設計された試
		薬を用いてください。
低濃度サンプルの反	標的 DNA のコピー数が	
応で直線性が乱れる	少なすぎる	しか含まれない場合、確率的にコピー数のばらつ
		きが大きくなり、直線性が乱れやすくなります。サ
		ンプル濃度を上げて反応を行ってください。
	DNA の反応チューブへ	使用したサンプルの DNA 量が少ない場合、また
	の吸着	はサンプルを希釈して長時間放置した場合、DNA
		が反応チューブへ吸着するなどの原因で実質的
		な鋳型量が減少することがあります。サンプル濃
		度を上げて反応を行ってください。また、サンプル
		を希釈して反応を行う場合は、希釈は反応直前に行ってください。
	プライマーダイマーの同	標的 DNA の増幅と、プライマーダイマーの増幅と
	時発生	が同時に発生し、標的配列のみの増幅曲線が検
		出できなくなることがあります。融解曲線解析によ
		って複数のピークが確認される場合は、反応条件
		の再検討を行い、プライマーダイマーの発生を回
		避してください。鋳型量を阻害のかからない最大
		量にし、サイクル数を少なくすることでエンドポイン
		トアッセイでは問題を回避できる場合があります。
希釈系列サンプルの	非特異反応との競合	プライマーの特異性が十分でない場合、標的以外
増幅曲線の間隔が揃		の増幅反応が同時発生し、標的配列のみの増幅
わない		曲線が検出できなくなることがあります。融解曲線
		解析によって複数のピークが確認される場合は、
		反応条件の再検討を行い、非特異反応の発生を
		回避してください。改善されない場合は、プライマ
		一配列の変更を検討してください。
	プラスミドを鋳型としてい	鋳型として環状プラスミドを使用している場合、ば
	る場合	らつきが生じやすくなります。制限酵素で切断し、
		直鎖状にしたものをご使用ください。

現象	原因	対策
PCR 効率が 80%を下	反応条件の不適合	標的配列によっては、標準の反応条件で十分な
回る		PCR 効率が得られない場合があります。説明書
(slope < -3.95)		[4] 使用方法 (2) PCR サイクル条件設定に従っ
		て、PCR反応条件の再検討を行ってください。
	プライマーの Tm 値が通	Tm 値が低いプライマーを用いた場合、標準のサ
	常よりも低い	イクル条件では十分にアニーリングが行われない
	(60°C 以下)	ことがあります。説明書[4] 使用方法 (2) PCR
		サイクル条件設定に従って、アニーリング温度の
		再検討を行ってください。
	プライマーの劣化	プライマーの劣化により、PCR 効率が大きく低下
		することがあります。プライマーの原液からの再希
		釈、またはプライマーの再合成を行ってください。
	PCR 効率算出時に、直	直線から外れた Ct 値を PCR 効率算出に利用した
	線から外れた Ct 値を含	場合、算出値の誤差が増大します。直線から外れ
	めた	た Ct 値を算出対象から外し、再計算を行ってくだ
		さい。
	プライマー量が少ない	プライマー量を増やすことで、増幅効率が改善す
		る場合があります。
PCR 効率が 110%を	PCR 効率算出時に、直	直線から外れた Ct 値を PCR 効率算出に利用した
上回る	線から外れた Ct 値を含	場合、算出値の誤差が増大します。直線から外れ
(slope > -3.1)	めた	た Ct 値を算出から外し、再計算を行ってください。
	非特異反応の発生	非特異反応の発生により、PCR 効率が 110%を超
		えることがあります。融解曲線解析により特異性
		の確認を行ってください。
再現性が悪い	サンプル中に不純物が	サンプル中に不純物を多く含む場合、PCR への
	多い	阻害が発生し、再現性が低下することがありま
		す。サンプル濃度を下げて反応を行うか、サンプ
		ルの精製を行ってください。
	希釈後、長時間放置し	濃度が薄い DNA 溶液は、容器への吸着によって
	たサンプルを使用	実効濃度が低下することがあります。原液から再
		希釈を行ってください。また、希釈系列による標準
		サンプルは、希釈後の保存は避け、毎回反応時に
		原液から都度作製してください。
	鋳型に精製プラスミド	精製プラスミド DNA 溶液や PCR 増幅産物を鋳型
	DNA や PCR 増幅産物	として使用する場合、希釈して用いることがありま
	を使用	す。その際、溶液中の DNA 濃度が極めて低くなる
		ことで、DNA が容器への吸着などによって失われ
		やすくなり、特に低濃度域の直線性や再現性が大
		きく低下する原因となります。希釈の際には、反応
		と関与しない核酸(yeast RNA など)を希釈液に混
		合することで低濃度域の直線性が改善される場合
		があります。
	プライマーの品質差	同一の配列を持つプライマーでも、合成時毎に品
		質差が発生することがあります。新規に合成を行
		った際は、従来用いていたものと比較実験を行っ
		て、品質差の確認を行ってください。

現象	原因	対策
no-template control	プライマーダイマーの発	融解曲線解析において、no-template controlのピ
(NTC)で増幅が見ら	生	一クが標的配列よりも低温側に存在する場合は、
れる		プライマーダイマーの発生が疑われます。プライマ
		ーダイマーは、プライマー配列のほか、プライマ ー
		の品質によっても発生程度が異なります。まず説
		明書[4] 使用方法 (2) PCR サイクル条件設定に
		従って、PCR 反応条件の再検討を行い、改善が
		見られない場合には、プライマーの再設計や再合
		成を検討してください。また、再合成の際は、
		精製グレードを HPLC 以上にしてください。
	コンタミネーションの発	融解曲線解析において、no-template controlのピ
	生	一クが標的配列とほぼ同じ位置に存在する場合
		は、増幅産物のキャリーオーバーが疑われます。
		再試時も再現する場合には、試薬類や滅菌水へ
		のコンタミネーションが発生している可能性があり
		ますので、試薬類や滅菌水の更新を行ってくださ
		い。
増幅曲線の蛍光シグ	50 × ROX reference	パッシブリファレンスを使用する機器において、
ナルが弱い、または	dye の添加量が過剰	50×ROX reference dye の添加量が過剰である
増幅曲線の形状がギ		場合、蛍光量補正時に SYBR® Green I の蛍光
ザギザになる		値が低く見積もられることがあります。説明書[4]
		使用方法 (1) 反応液の調製に従い、50×ROX
		reference dye の添加量を確認してください。
	蛍光測定時間が短い	一部の機器では、PCR の伸長時間が短すぎる場
		合、蛍光測定が十分に完了しない場合がありま
		す。増幅曲線のがたつきが目立つ場合には、伸長
		時間を長め(45~60 秒)に設定することで、改善さ
		れる場合があります。
	反応液量が少ない	機器の標準条件よりも少ない液量で反応を行った
		場合、蛍光測定値の誤差が増大する傾向があり
		ます。液量を増やして反応を行ってください。
融解曲線解析で複数	非特異反応の発生	プライマーの特異性が十分でない場合、標的以外
のピークが見られる		の増幅反応が同時発生し、純粋な標的配列のみ
		の増幅曲線が検出できなくなることがあります。反
		応条件の再検討を行い、非特異反応の発生を回
		避してください。改善されない場合は、プライマー
		配列の変更を検討してください。
	プライマーダイマーの発	標的 DNA の増幅と、プライマーダイマーの増幅と
	生	が同時に発生することがあります。反応条件の再
		検討を行い、プライマーダイマーの発生を回避し
		てください。改善されない場合は、プライマー配列
		の変更や、精製グレードを上げた再合成を検討し
		てください。

現象	原因	対策
プライマーに GC tail	増幅長が長い	増幅長が長い場合、GC tail が Tm 値に与える影
を付加したが、Tm 値		響が小さくなります。 増幅長を 100bp 以下になる
に差が認められない		ようにプライマーを設計してください。なお、増幅産
		物のTm値を計算上求めることで、Tm値の差を推
		測することができます。
	増幅産物の GC 含有率	増幅産物の GC 含有率が高い場合、GC tail を付
	が高い	加しない状態でも Tm 値が著しく高くなります。そ
		のため、GC tail が Tm 値に与える影響が小さくな
		ります。この場合は、別の領域にプライマーを設計
		してください。
マルチプレックス検出	増幅長が長い	増幅産物のTm値は、増幅長が短い範囲では、増
において、Tm 値が分		幅長に比例し Tm 値が上昇しますが、ある一定以
かれない		上の長さになると、Tm値が一定になります。計算
		上、増幅産物の Tm 値を求め、差が生じる増幅長
		の範囲でプライマーを再設計してください。
	増幅産物の GC 含有率	増幅産物のGC含有率が高い場合、短鎖ターゲッ
	が高い	トにおいても、Tm 値が高くなるため、Tm 値に差が
	73 [E] V	生じにくくなります。短鎖の範囲内で計算上、Tm
		値に差が生じるようにプライマーを設計してくださ
		い。Tm 値が変わらない場合は、別の領域での設
		計を検討してください。
	 スムージング機能による	機種によっては、スムージング機能により、近接す
	影響	る2つのピークを幅広い一本のピークとして表示
	ボノロ	する場合があります。この場合、融解曲線サイク
		ルの温度上昇速度を下げて融解曲線解析を行う
		ことで、解決できる場合があります。改善されない
		場合は、Tm値の差が5°C以上になるようにプライ
		マーを再設計してください。
マルチプレックス検出	2 種類のターゲットで増	SYBR® Green I アッセイでは、増幅長に比例し、
	幅長が著しく異なる	蛍光強度が強くなります。そのため、増幅長が著
ランスが悪い		出た強度が強くなりより。とのため、増幅度が増 しく異なる場合は、増幅量が同じでもピークの高さ
ノンへが、恋い		が異なります。ターゲット長に大きな差が生じない
		ようにプライマーを設計し直してください。また、ピ
		ようにノライマーを設計し直してください。また、E 一クが高いターゲットを増幅するプライマー量を減
		一クか高いタークットを喧幅するフライマー重を減 らすことで改善することがあります。
	マーニリングが変が思	
	アニーリング効率が異 *: z	2 種類のプライマーの Tm 値が大きく異なる場合、
	なる	アニーリング効率が異なるため、増幅量のバラン
		スが悪くなります。まず、ピークが高い方のプライ
		マー量を減らす検討を行ってください。改善されな
		い場合は、2 種類のプライマーの Tm 値が同じに
		なるようにプライマーを再設計してください。

TOYOBO

<製品の内容・技術に関するお問合せ> 東洋紡 テクニカルライン

TEL 06-6348-3888 FAX 06-6348-3833

開設時間 9:00~12:00, 13:00~17:00 (土日祝日、休日を除く)

E-mail: tech_osaka@toyobo.jp [URL] https://lifescience.toyobo.co.jp/